Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice.

نویسندگان

  • Zongwen Tian
  • Hanqiao Zheng
  • Jie Li
  • Yifan Li
  • Huabo Su
  • Xuejun Wang
چکیده

RATIONALE Both cardiomyocyte-restricted proteasome functional enhancement and pharmacological proteasome inhibition (PSMI) were shown to attenuate myocardial ischemia/reperfusion (I/R) injury. The role of cardiac proteasome dysfunction during I/R and the perspective to diminish I/R injury by manipulating proteasome function remain unclear. OBJECTIVES We sought to determine proteasome adequacy in I/R hearts, create a mouse model of cardiomyocyte-restricted PSMI (CR-PSMI), and test CR-PSMI impact on I/R injury. METHODS AND RESULTS Myocardial I/R were modeled by ligation (30 minutes) and subsequent release of the left anterior descending artery in mice overexpressing GFPdgn, a validated surrogate proteasome substrate. At 24 hours of reperfusion, myocardial proteasome activities were significantly lower whereas total ubiquitin conjugates and GFPdgn protein levels were markedly higher in all regions of the I/R hearts than the sham controls, indicative of proteasome functional insufficiency. CR-PSMI in intact mice was achieved by transgenic (tg) overexpression of a peptidase-disabled mouse β5 subunit (T60A-β5) driven by an attenuated mouse mhc6 promoter. Overexpressed T60A-β5 can replace endogenous β5 and inhibits proteasome chymotrypsin-like activities in the heart. Mice with moderate CR-PSMI showed no abnormalities at the baseline but displayed markedly more pronounced structural and functional damage during I/R, compared with non-tg littermates. The exacerbation of I/R injury by moderate CR-PSMI was associated with significant increases in the protein level of PTEN and protein kinase Cδ (PKCδ), decreased Akt activation, and reduced PKCε. CONCLUSIONS Myocardial I/R causes proteasome functional insufficiency in cardiomyocytes and moderate CR-PSMI augments PTEN and PKCδ, suppresses Akt and PKCε, increases cardiomyocyte apoptosis, and aggravates I/R injury in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Medicine Genetically Induced Moderate Inhibition of the Proteasome in Cardiomyocytes Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice

Rationale: Both cardiomyocyte-restricted proteasome functional enhancement and pharmacological proteasome inhibition (PSMI) were shown to attenuate myocardial ischemia/reperfusion (I/R) injury. The role of cardiac proteasome dysfunction during I/R and the perspective to diminish I/R injury by manipulating proteasome function remain unclear. Objectives: We sought to determine proteasome adequacy...

متن کامل

Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?

Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...

متن کامل

Effects of pretreatment with non hypotensive dose of ramiprilat and losartan on myocardial ischemia-reperfusion induced arrhythmias and infarct size in rats

Introduction: Inhibition of renin angiotensin system represents an important approach in the management of cardiovascular diseases. The aim of this study was to explore the effects of pretreatment with non-hypotensive dose of angiotensin converting enzyme (ACE) inhibitor, ramiprilat and angiotensin type 1 (AT1) receptor blocker, losartan on myocardial infarct size and arrhythmias in a rat mo...

متن کامل

C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation.

OBJECTIVE To investigate whether and how the endoplasmic reticulum (ER) stress-induced, CCAAT/enhancer-binding protein-homologous protein (CHOP)-mediated pathway regulates myocardial ischemia/reperfusion injury. METHODS AND RESULTS Wild-type and chop-deficient mice underwent 50 minutes of left coronary artery occlusion followed by reperfusion. Expression of chop and spliced x-box binding prot...

متن کامل

Tiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice

Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 111 5  شماره 

صفحات  -

تاریخ انتشار 2012